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This paper analyzes the appearance and distribution of noise on

a spectrum obtained by & Fourier transformation of an interferogram

which was the source of the spectrum and noise.

This is accomplished through a discrete formilation by use of

sampling theory and statistical methods. As a consequence of this

formilation, a noise comparison of conventional spectrometers and
interferometers is readily obtained which verifies that Fellgett's

advantage does hold for interferometers with non-background limited

detectors. p‘ \‘UH’\D ¢
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INTRODUCTION

The purpose of this peper is to amalyze the statistical characteristics of
noise existing on a spectrum when the spectrum has been obtained by means of a
two-beam interferometer spectrometer. In this analysis the distribution of noise
associated with a spectrum obtained by a Fourier transform of an interferogram
will be derived. Also, it will be shown that the use of an interferometer spec-
trometer has a J-I‘—i signal-to-noise adventage over a conventional spectrometer
when the detector used is non-background limited, M being the number of resolv-
able spectral components. This advantege in signal-to-noise ratio is commonly

referred to as Fellgett's advantage.
THE INTERFEROGRAM AND ITS TRANSFORM

A considerasble number of papers have been written on the interferometer
spectrometer; consequently, the interferometer and its basic theory will be
discussed here only to the extent needed for orientation.t’®
Assume that an interferameter is illuminated by a monochromatic coherent

source of constant intensity. Then, the interference intensity wave is

I(t) = I (l+cosyuwt)

where w=2xnf, £ =c/N, 7 =2v/c

I is the light intensity, A is the wavelength of light, ¢ is the velocity of
light, and v 1is the velocity of the interferometer mirror. For heterochromstic
radiation the interference wave becomes

I(t) =fm I(w)[1+cosywt]dw (1)
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This intensity wave is incident on a detector; thus, the output of the detector

is propartional to (1) and is of the form
=]
e =c+ [ a(w)eoshrutsa(u)las (2)
o

The right-hand term of (2) is then essentially an electrical analog of the

~ae? and om 13 4 P I R

original optical electric field strength scaled down in freguency by the facvor
7. The phase angles 9(w) will be zero, provided input intensity fluctuations
do not occur, all system parameters are linear, and the proper time origin is
established. The desired spectrum is cbtained from the Fourier transform of the
non d-c term of the interferogram Eq. (2), and the transform mey be expressed

as

Fe(t)] = B(w) =f°° e(t)coswtdt+j fw e(t)sinwtdt (3)

where the first and second integrals transform the even and odd parts of e(t),
respectively. In particular, if the phase angle ¢(w) = O for all w in (3),

then e(t) is an even function and the second integral in (3) is zero.
DISCRETE FORMULATION

In general, most spectra observed will be continuous. However, provided
that sampling theory is correctly applied, thg formilas of Fourier transformation
spectroscopy mey be expressed in a discrete form as well as the more familiar
integral representation. For the purpose of this paper.the discrete formulation
has several advantages and will therefore be used in the following analysis.

Sampling theory shows® that if a function is time-limited to T seconds
(i.e., the function is zero at all points outside an interval T seconds in

duration) and contains negligible frequency components greater than B cycles
3




per second, then the fumction (and therefore its Fourier transform) may be

completely determined (i.e., reconstructed) by 2BT samples taken in the time

domain at intervals of 1/2B seconds? or in the frequency domain at intervals of

1/T cycles per second fram -B to +B.

If sampling theory is used then one may write Eq. (1) as
M
A N .
I(t) =) Ii(1+cos7wyt)

i=1
where wj =213 amd fi =c/M
Equation (2) becomes
M
e(t) = ¢ +Zdicos(7w1t+q)i)
i=1

and (3) may be expressed as

BT BT
Oby Ze(—é%)coswktjfj&i Ye<—21'§>sinwkt1

E(wx) =
i=-BT 1=-BT
where W = 2%k/T, k = *¥1, *2, ..., *BT, Aty = 1/2B, ti = 1/2B
and e(—i—> - e(t)l
2B t=1/28

Several observations should be made at this point with regard to the

generality of (4) and (5). First, owing to physical limitations of the instrument,

(4) nolds only for a limited observation time T. Hence, the true detector signal

is not (5) but is ep(t), where

1 -T/2<t < T/2
ep(t) = e(t)h(t) with h(t) =
O elsewhere

(5)

(6)

(7)




and e(t), is given by (5). However, the Fourier transform of the ith term

of the truncated wave eq(t) is

[si.nﬂ(f-rfi_) . sinﬂT(fﬂi’i)]
n(f-yP1) n(£+7£1)

compared with the transfarm of the corresponding term of e(t) which is

ag [B(f-rP1) + B(P+rfy)]

Furthermore, the amplitude components, di, of Eg. (5) are proportional to the
amplitudes of the magnitude of the Fourier transform at the sampling points
wy = 2ni/T, that is,

a = 2/f Hen®))| g/ (8)

where the factor 2/T appears because Eq. (5) is in the form of a Fourier sin-cos
series and there is a difference of a factor of 2/T in the definition of the
series coefficients and of this transform.

Secondly, the generality of representing the interference wave (1) by (4)
using a discrete sum of M terms to cover the continmumum of frequencies £, to fiy
needs to be considered. Essentially, the mechanism of the interference process
and its detection is one of campressing and translating the spectrum of optical
frequencies into a wave, ep(t), with a spectrum of frequencies, say, from
0 to B cps, which may be in the audio-frequency range. This is accomplished by
mapping the intensity pattern of the optical interferogram into ité electrical
representation ep(t). The point which requires examinstion then is, how good
will the representation of the desired optical spectrum be if it is obtained from
the Fourier transform of eq(t), which is both time-limited (T sec), approximately
band-limited (B cps), and represented by a discrete number of independent terms.

The answer to this question will be given later in this paper, where it is shown
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that the number of resolveble components M, required to represent the true
optical spectrum of a continuum of frequencies f; to fjy is BT. Since the
signal ep(t) may be completely represented by 2BT independent date, according
to sampling theory, the summations of (%) and (5) completely describe the desired
optical spectrum within the resolution determined by eT(t) when the source under
observation consists of a continuum of frequencies. It should be noted that BT
independent amplitude data and BT independent phase data are required to com-
pletely specify eT(t) , but the phase information is deleted in the computation

of the magnitude of the Fourier transform.
TRANSFORMATTON OF ADDITIVE NORMAIL, INTERFEROGRAM NOISE

As indicated in the previous section, an interferogram is a time record
whose Fourier transform gives the spectral data of the observed source. Any
noise in the time record is redistributed when the Fourler transformetion is
performed. There has been some confusion as to how such a transformation affects
the noise in the spectrum, as compared with & conventional spectrometer. In the
following section it will be shown that, although the noise is redistributed in
a different form with different statistical parameters, the signal-to-noise ratio
per spectral element of a spectrum derived from an interferogram does exhibit
Fellgett's advantage.

To determine the effect on the spectrum of noise appearing on the time
function, first consider the noise probability density function and how it trans-
forms. In doing this, it will be necessary to assume that the transformation
process does not introduce additional noise power. This assumption is reasonable
in practice, since discrete formulation is possible by sampling theory, thus

allowing the operation to be performed by a digital computer program.
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Because of the detector noise®’®

» every amplitude sample of the interferogram
ep(t) will be measured with same uncertainty, say €; for the ith sample.
Then the resultant interferogram will be
ep(t) = eg(t)+ep(t) (9)

vhere efp(t) is the true signal and €(t) is the noise, or in a sampled form

ey = ef+ey, i =0, £1, +2, ..., BT (10)
Assume that the random noise ep(t) belongs to a normal probability distribution
with zero mean. This statistical characterization will include all random nor-
mally distributed noise that is additively superimposed on the true interferogram
and whose samples €3j are statistically independent.

The probability density function for any error €3 1is given by

-2
P(e)de = (2mi-)l = exp L2§2 de (11)

where o2 = varlance of €j. It can be verified that the variance, o2, is
equal to the average power of the amplitudes of €(t). Thus, Eq. (11) expresses
the statistics of the time domain noise, €(t), on the interferogram ep(t).
Now that the time damain noise to be considered has been formulated, the goal
will be to statistically characterize this noise in the transformed spectrum.

ep(t) expressed in terms of its semple form may be transformed by (6) which
is far w = e

a(w)+3B(w)

BT
where a(w) = -2% Z E‘I('an):OS('%%

n=~-BT

=0 ,wl> 218 (12)




and plw) = 2 Z EVEY

n—~BT

.o ] =

For a given frequency e(w) is a weighted sum of all the €3 so that by the use
of the central limit theorem’ it can be shown for large BT +that the random
variables o and B are independent and the probability distributions of the

amplitudes of a(w) and B(w) are represented by

P(a) = — L _ exp f'mz}

(p2m)* o2
and | P(B) = —(;j—')l? exp {'—pﬁ;} | (13)
for lw, <21cB

oe oy oy o]

Since ep(t) was assumed to be randam noise, the €i are statistically independent
and consequently p2 1is not a function of frequency. The relation between the

variance of the time samples and the variance of the frequency samples is given

-5 <) -5~ =

Furthermore, the joint distribution of « and P is the bivariate normal distri-

as?

bution
P(x,B)andB = 321—,( exp - {“_2;“‘25_2 dadp (15)
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These expressions describe the statistical behavior of noise alone irrespective
of the true signsl, but these formulations readily permit the characterization
of the transformed noise superimposed on the true spectrum.

From (9) the Fourier transform of the received time record ep(t) is

Hep(t)] =FHeq(t)] +Flep(t)] (16)
or E(w) = Blw) + e(w)
where Hw) = alw) + jblw)

a(w) + 3B(w)

and e(w)

From (8) and (16) the spectrum of imtensity as a function of frequency becames

for the general case

| | - 2| [a(u)salw) 1salo(udsp(w)] ooan

The probability distribution of the variseble I—E-Ei:[(‘ﬂ)- l , Wwhere the transform of the
noise is described according to (15) will be representative of the way the noise

is distributed over the spectrum.

For each sample, a(w,) and b(w.) are fixed, and ’%“ﬁ can therefore be

considered by means of the varisbles

X = %(a-)a)
y = %(b+ﬂ) |
: 2 \2
mam (15) ey = Lo enfl(x- 2T (-2 ey o)

where y2 = <<—%—9-’>2> = gT%a




Therefore, from (14) ¥v2 =12 (19)

1/z2
The variebles in (18) may be changed so that r = (x2+y2) - IEEwa) ’ and
-1
6 = tan y/x. When this is done then it may be readily shown that the desired

distribution p(r)dr is Ricien.® That is,

\
/

To\yz /= (20

[+
. =m
1/2
where p = (22+b2) and Io(z) =Z(—§-> m!)® 1is the zero-order hyperbolic
m=0

Bessel function. An alternate form of Ig(z), useful for large values of the

argument, is

e (341,.9 . ... :
o) - (2:vtz)l/2 l+82+128z2 * > (21)

The properties of the density function (20) may be described by its moments

which are given by8

<rn> = (2V2)n12f<521-+1> exp {-;-%Z} N(%+l;l;2i:;2—>

where M 1s a confluent hypergeometric function.

22)

~~

In particular,

<r2> = 2+év2 (23)

and for no signal present (only noise)

1/2

=D - 3) e
and <r2> = 292
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Expression (20) represents the probability distribution of the amplitudes
of the spectra which include the true spectrum and the superimposed noise. The
particuler shape of the distribution for any amplitude (any semple in the frequency

domain) is dependent upon the magnitude of the true signal. That is,

i1/2
we2 {[a(w)la + [b(w) 12} (25)

Figure 1 shows in normalized farm W¥P(r) vs. r/¥ for several values of % 1
B/

For purpose of interpretation (20) can be closely approximated in two
particular cases: First for 4 = 0 and for small p over the range of

r << ¥, then

SORE

and P(r)ar = -:—'-zex:p{-;-i-'; ar (26)

This is the Rayleigh distribution presented in normalized form in Fig. 1 with
p/v = 0., The significant point is that the distribution for zero signal is not
centered about zero. In Pfact the peak for the Rayleigh distribution occurs at
r = ¥. The first and second moments are given by (24) as is shown in Fig. 1 by
the curve for p/¥ = O.

Consider the second case where the amplitude of the true spectrum is large
compared to ¥, that is, u >> ¥. For lerge 2z from the series form of (21)

1/2
Io(z) = e%/(2nz) , so that (20) can be approximated by

[ /3
P(r)ar = -*—-raexp - E]‘;E(rzwa)gt—lzwg} exp@%) ar

-t ©) et e e

11



which for r = u further closely approximates a normsl distribution

P(r)ar = —=—— exp{- ‘2'%2"(1"!-1)2} (28)

(2 m1’2)1/2
It should be pointed out that if the conditions are met so that d(w) =0
in (2) for all w, then only the cosine transform need be computed to determine
the spectrum. The noise distribution on the computed cosine transform is then
given by the first equation of (13), and the spectrum, as a function of frequency,
is

! = 2E(w) _ 2 [a(w)+a(w)]
T T

The probability density function of r' becaomes from (13)
P(r) = —L—5 exp{- -3;—2<r' - %‘5—7} (29)
(2m¥?) 2

NOISE COMPARISON

Equation (20) and its approximation (27) characterize the statistics of the
transform of the interferogram which includes signal plus normal (Geussian) noise.
Now a comparison of interferometers and conventional spectrometers with respect
to errors caused by normel (Gaussian) noise can be made. The only noise which
will be considered is that which originates in the detector.

Detector noise is generally ascribed to two sources; that which is intrinsic
in the detector itself and that which is generated in the detector by the statis-
tical fluctuations of the incident photons. Detectors whose intrinsic noise is
less than that due to incident photon fluctuation are known either as photon
limited or background limited detectors. In the case of the conventional spectrom-
eter the signal-to-noise ratio is not a function of the source of the detector

12



noise. This is not the case, however, for the interferometer spectrometer. If
the interferometer detector is background limited, the detector sees simaltane-
ously the total radiation from all of the spectral elements while the detector
of the conventional spectrometer is affected only by the radiation fram one
spectral element. Thus, the interferometer detector noise is M times greater.
Only the non-background limited detectors will be considered at this time, with
the background limited detectors being treated later. The former class of
detectors is both large and important, being as all detectors used in the
infrared spectral region are considered to be non-background limited.

To compare the noise errors of a conventional and interferometer spectrom-
eter 1t is necessary to assume the same scan time, T, for the conventional
spectrometer as for the interferometer and the same number of resolved spectral
elements M, where M = BT. Then the time allowed for the measurement of each
resolved spectral element 1s 1/B and the required bandpass is approximately
B cycles per second. Therefore, the noise can be limited to a bandwidth of B
and the probability distribution of the noise is characterized by the same o2
as used in Eq. (11). Thus, the amplitude error per spectral element for conven-
tional case obeys the statistics expressed by (11). Also, one mey write in an
anslogous menner to (10) St = S§' + €5 where Si' 1s the true signal amplitude
and €3 1s the superimposed noise error. Her;ce, for the statistical represen-
tation of each sample (amplitude) Si, the true signal Sj_, = py 1is fixed and
can be considered as the mean so that the probability éensity function of the
amplitudes is

P(s)as - ?2—7;7@ el (s} as (30)

13



By way of comparison of amplitude errors for the interferometer spectrometer
and the conventional spectrometers, note the results (20) and (30) and in
particular (28) and (30) for large signal values. The veriance indicates the
spread of the distribution and the smmller the variance the more peaked the
distribution becames. From (18)

. 1N .

R\
Hence, it can be concluded that the amplitude noise error per spectral element
for the interferameter belongs, with a given probability, to a smaller amplitude
range. That is, the time damain amplitude errors are redistributed into amplitude
errors in the frequency domein where the most probable amplitude range has been
decreased. This is illustrated in Fig. 2, where arbitrarily BT was chosen Fig. 2
to be 100. Where it has yet to be shown that BT is the number of resolvable
components in the spectrum.

On the basis of these results, the noise powers per spectral elements for

the conventional spectrometers and the interferometer can be computed and

campared. Any camputed spectral amplitude is of the form
= 2 | FHege)1 |
r = ﬁ eT
and the corresponding true amplitude is

: i/z2
we2{la@i® + pwi?f

The mean square error <(r - p.)2> is then the average noise power, N12 5

which may be expressed as

le = <(r - u)2> = <r2> -2 <r> B+ p2

1%




using Eg. (23),
Ny~ = 2V + 2»( - (r)> (31)

The meen of r, <r > » bas been camputed from (22) and N;- evaluated as
a function of true signal, p. The results are plotted in Fig. 3. It is seen ég 3
that the noise power is a function of the signal and thet the meximm noise power,
NiZ ., occurs at k=0 and in terms of variance

NGy = 2¥°

The minimm noise power occurs where /¥ = 1, in which case NI!ZMD = 0.87 v2.

Furthermore, for larger u/¥, N12 quickly approaches V2. Relating ¥2 to the

variance (or aversge noise power) of the time amplitude noise by (18) gives

=

= BT (32)

NIZ

For the special case where only the cosine transform describes the spectrum,
the probability density function was expressed by (29). Since (29) is a Gaussian
(normal) distribution, the average noise power per spectral element is V2 which
is clearly independent of the signal —‘%a(w)- Hence (32) is the average noise
power for the interferometer for this case.

In the time record, the amplitude nolse power was o¢2. OSince the same
additive noise occurs directly on the spectrum of the conventional case, then
o2 1s the average nolse power per spectral element assuming the same scan time
T and bandwidth B in both cases.

It is desired now to prove that BT is equal to M, where M i1s the
number of spectral camponents that an interferometer is able to resolve. Suppose
that a source emits energy of two frequencies £, and fo. The interferometer

produces an output whose Fourier transform is of the form

15



T 5 slonP(f-7f£y) 7 . sinaT(f-7fp)
.3‘[eT(t)] > d; AT(2-72,) +3 do _—_—:f_‘[‘(f-yfz)

(showing only the positive frequency terms). According to the Rayleigh
criterion, the two spectral lines are independent and resolveble when the maximm -
of one coincides with a first zero of the other. In the above example, then, the
frequencies P, and £, are resolvable if oFf = 7‘ £y - £ i = % If the spectral
range of the source is from fg to f;, and the resclution is ©8f, then the

number of distinguisheble independent spectral elements 1s M = (fy, - f5)/bf.

In the frequency mepping of the interferaometer fy, - fa = B and 8f = % 80 that

M = BT. Thus, from (32) the noise voltage for an interferometer is

Ny =J-%' (33)

From this it may be seen that the noise voltage of an interferometer is 1//M
times the noise voltage for a spectrameter. Since the signal levels are the
same for both, this results in a JM signal-to-noise advantage for the inter-
ferometer, which has been called Fellgett's advantage. This advantage holds
for non-background limited detectom:s. If the detector is background limited,
then the mean rate of photons < Ir > incident on the detector, and thgrefore
the noise power, is M times as great for the interferometer as for the conven-
tional spectrameter. Thus, (33), for interferometer noise voltage, becomes

Ny = 0 and Fellgett's advantage is cancelled.
SUMMARY

The probability distributions which govern the noise superimposed on the
signal for both the interferometer and conventional spectrometer are derived

and compered. For interferometers, the variance, and hence the spread of error
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amplitudes per spectral element, is less than for the same time observation and
same resolution for the conventional case. Furthermore, the noise power in the
spectrum is shown to be dependent on the signal, and varies from 202/M to
approximately o2/M and hence the signal-to-noise voltage ratio comparisons

show an advantage of from JM/2 to approximately Jﬁ for the interferometer.
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FIGURE LEGENDS

Fig. 1.- Normalized probability distribution curves of the amplitude of interfer-
ometer spectra which includes the true spectrum and the superimposed noise for
different values of the true signal u/¥. This demonstrates the dependence of
the distribution on the amplitude qf the true signal. Note: For zero signal,
the distribution (Rayleigh) has its peak at r = V.

Fig. 2.- Comparison of noise distribution curves for conventional and interfer-
ometer spectrometers. Curves (a) and (b) are for a conventional spectrometer
with P(S8) plotted against S, a variance of o and p = O and 100, respec-
tively. Curves (c) and (d) are for an interferometer spectrometer with P(r)
plotted against r, BT = 100 and ¢ = O and 100.

Fig. 3.- Noise power curve showing the dependence of noise power on the true signal.
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